Tuberculosis (TB) is an important health problem in correctional systems in many parts of the United States. Although the incidence of TB case rate for the general population has remained at fewer than 10 cases per 100,000 persons since 1993, substantially higher case rates, some as high as 10 times that of the general population, have been reported in correctional populations. The TB case rate reported from 1 urban jail was 72.1 cases per 100,000 inmates, representing 10% of the county's cases. Furthermore, studies have found the prevalence of latent TB infection (LTBI) among inmates to be as high as 25%. Other studies have shown a correlation between length of incarceration and positive tuberculin skin test responses, indicating transmission may have occurred in these facilities.

A disproportionately high percentage of TB cases in the United States occur among persons incarcerated in correctional facilities. In 2003, 3.2% of all TB cases nationwide occurred among residents of correctional facilities. In contrast, 0.7% of the total US population were confined in prisons and jails in 2003, a population that was increasing at an average annual rate of 3.7% from 1995 through 2003. One notable reason for the high rates of TB in correctional institutions is the greater proportion of persons who are at high risk for TB but who cannot access standard public health interventions. Transmission risks particular to correctional institutions include close living quarters, poor ventilation, and overcrowding.

Owing to the occurrence of TB outbreaks and the documentation of high rates of TB in correctional systems, the Centers for Disease Control and Prevention (CDC), in 1993, began asking state health departments to report whether those newly diagnosed with TB were residents of correctional facilities. We analyzed data reported to the national TB surveillance system from 1993 through 2003 to define trends in correctional TB cases and describe characteristics of individuals with TB who are residents of correctional facilities.

**Objectives:** We sought to describe disparities and trends in tuberculosis (TB) risk factors and treatment outcomes between correctional inmate and noninmate populations.

**Methods:** We analyzed data reported to the national TB surveillance system from 1993 through 2003. We compared characteristics between inmate and noninmate men aged 15–64 years.

**Results:** Of the 210,976 total US TB cases, 3.8% (7,820) were reported from correctional systems. Federal and state prison case rates were 29.4 and 24.2 cases per 100,000 inmates, respectively, which were considerably higher than those in the noninmate population (6.7 per 100,000 people). Inmates with TB were more likely to have at least 1 TB risk factor compared with noninmates (60.1% vs 42.0%, respectively) and to receive directly observed therapy (65.0% vs 41.0%, respectively); however, they were less likely to complete treatment (76.8% vs 89.4%, respectively). Among inmates, 58.9% of completed treatment within 12 months compared with 73.2% of noninmates.

**Conclusions:** Tuberculosis case rates in prison systems remain higher than in the general population. Inmates with TB are less likely than noninmates to complete treatment.
Trends in Tuberculosis Cases and Rates

From 1993 through 2003, the percentage of TB cases among local jail inmates increased from 42.8% of all inmates with TB to 53.5% \( (\chi^2 \text{ for trend}= 57.8; \chi^2<.001) \), whereas cases among federal inmates increased from 2.9% to 11.8% (Table 1). Case rates for the 11 years studied were 29.4 per 100,000 for federal prisons and 24.2 for state prisons. In contrast, federal prisons in 1993 and in 2003 had nearly level TB case rates. In state prisons, case rates decreased from 52.3 in 1993 to 9.3 in 2003, a decline of 87.4%.

Two states, California and Texas, accounted for 42.7% of the 7820 reported TB cases among inmates from 1993 through 2003. In California, the prevalence of TB infection decreased from 23.8% in 1993 to 9.3% in 2003. In local jails, the prevalence of TB infection decreased from 22.8% in 1993 to 10.6% in 2003. Inmates with TB were also more likely than noninmates to be HIV infected. From 1993 through 2003, HIV infection was documented in 35.8% of inmates with TB in state prisons, in 20.7% of those in jail, and in 13.2% of those in federal prisons. Overall, of males with TB aged 15 to 64 years, 25.2% who were inmates were known to be HIV infected versus 18.0% of those who were noninmates. A positive finding, however, is that HIV prevalence is declining in this setting. Among those with TB in state prisons, the prevalence of HIV infection decreased from 43.1% in 1993 to 11.6% in 2003. In federal prisons, the prevalence of HIV infection decreased from 23.8% in 1993 to 9.3% in 2003. In local jails in 1993, 22.8% of inmates with TB also were infected with HIV, whereas in 2003, 12.4% of inmates with TB were HIV infected.

Clinical Presentation and Drug Resistance

A higher proportion of inmates (90.3%) than noninmates (84.4%) had pulmonary TB. Results of sputum smears for acid-fast bacilli and sputum cultures were reported more often for inmates than for noninmates. Inmates compared with noninmates were less likely to have extrapulmonary TB (OR = 0.60; 95% CI = 0.55, 0.66; \( P<.001 \)).

Table 3 presents the frequency of drug resistance of \( M \) tuberculosis isolates among inmates and noninmate patients. In general, drug-resistance levels were higher in those with a prior history of TB, those not born in the United States, those with HIV infection,

<table>
<thead>
<tr>
<th></th>
<th>Inmate Cases, No. (%)</th>
<th>Noninmate Cases, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess alcohol usea</td>
<td>214 (21.4)</td>
<td>140 (33.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>1112 (20.7)</td>
<td>2113 (21.0)</td>
</tr>
<tr>
<td>No</td>
<td>505 (50.5)</td>
<td>245 (58.8)</td>
</tr>
<tr>
<td>Unknown</td>
<td>279 (28.0)</td>
<td>32 (7.7)</td>
</tr>
<tr>
<td>Injecting drug useb</td>
<td>121 (12.1)</td>
<td>49 (11.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>121 (12.1)</td>
<td>49 (11.8)</td>
</tr>
<tr>
<td>No</td>
<td>570 (57.1)</td>
<td>327 (78.4)</td>
</tr>
<tr>
<td>Unknown</td>
<td>307 (30.8)</td>
<td>41 (9.8)</td>
</tr>
<tr>
<td>Noninjecting drug use</td>
<td>211 (21.1)</td>
<td>127 (30.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>121 (12.1)</td>
<td>49 (11.8)</td>
</tr>
<tr>
<td>No</td>
<td>480 (48.1)</td>
<td>251 (60.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>307 (30.8)</td>
<td>41 (9.8)</td>
</tr>
<tr>
<td>Homelessnessc</td>
<td>126 (12.6)</td>
<td>65 (15.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>126 (12.6)</td>
<td>65 (15.6)</td>
</tr>
<tr>
<td>No</td>
<td>726 (72.8)</td>
<td>326 (78.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>146 (14.6)</td>
<td>26 (6.2)</td>
</tr>
<tr>
<td>HIV statusd</td>
<td>Infected</td>
<td>321 (32.2)</td>
</tr>
<tr>
<td>Noninfected</td>
<td>182 (18.2)</td>
<td>229 (54.9)</td>
</tr>
<tr>
<td>Unknown</td>
<td>495 (49.6)</td>
<td>141 (33.8)</td>
</tr>
</tbody>
</table>

Note. The proportions of inmates and noninmates have 1994 as the baseline year owing to a substantially high proportion of missing data for 1993.

a Reported in the year prior to diagnosis.

b All 2003 California cases are classified as unknown HIV status.

c The success of TB control in the United States is evident by the steady decline in cases among incarcerated populations along with declining rates in the communities from which inmates are drawn. Yet, our findings call attention to the epidemiology and health-related outcomes in correctional inmates that demonstrate marked disparities in TB rates, measures of risk including HIV infection, and TB treatment outcomes.

Substantially greater case rates in correctional systems are indicative of this disparity, especially in the federal prison system. In 2003, the TB case rate for federal prisons was 6.9 times the rate in the general US population (5.1 cases per 100 000 population). Paradoxically, enhanced screening in federal prisons may have resulted in better case detection and thus an apparent rise in the number of TB cases. The increasing proportion of inmates who are born in countries other than the United States also may be partly responsible for the increase in TB cases in federal prisons. Although we did not calculate the case rate among jail inmates because of unreliable population estimates, local studies indicate that case rates in jail populations are also greater than in the general population. In San Francisco, for example, jail inmates had a case rate of 72.1 cases per 100 000 inmates compared with a rate of 26.2 cases per 100 000 persons in the local population.

Inmates, in contrast to noninmates, are more likely to have multiple risk factors for infection with M tuberculosis and for progression to TB disease. Inmates are also more likely to have drug-resistant TB. Special efforts are needed to mitigate the personal and public health toll created by these risk factors. The concentration of these factors in a congregate population has resulted in explosive outbreaks of TB, as demonstrated in a North Carolina outbreak involving 25 homeless patients, 72% of whom had a history of incarceration in the local county jail. Tuberculosis outbreaks and ongoing transmission have occurred even after inmates were screened for TB and also have been attributed to failure to complete treatment by inmates known to have LTBI.
Despite elevated rates of HIV infection—the strongest risk factor for developing TB among adults who have LTBI—the HIV status of more than one third of inmates with TB is unknown. In a study of 20 large city and county jails, a review of inmate medical records found that only 48% of 376 inmates with LTBI had a known HIV status.\textsuperscript{29} Although the CDC recommends routine HIV counseling and testing at intake to the correctional facility,\textsuperscript{30} the majority of correctional systems currently do not offer universal HIV testing, a critical limitation for effective TB prevention and control and for the medical management of individual patients.\textsuperscript{31} Moreover, in HIV-infected persons infected with \textit{M tuberculosis}, the progression to TB disease is often rapid and can cause difficult-to-control outbreaks.\textsuperscript{37}

Outbreaks of both multidrug-resistant and drug-susceptible TB related to HIV coinfection have been documented in correctional facilities.\textsuperscript{3,4,7,12,33} These outbreaks are often attributed to the failure to detect TB disease early after entry into the facility or failure to complete treatment for LTBI resulting in TB transmission to other inmates, correctional facility employees,\textsuperscript{35,36} and community members.\textsuperscript{37}

Epidemiologic and operational studies have helped elucidate problem areas for TB prevention and control in correctional systems and the surrounding community.\textsuperscript{5,7,10,14,25,34–37} One such study in Memphis, Tenn, showed that 43% of community residents with TB had been incarcerated in the same jail at some time before their diagnosis, and this jail had experienced a TB outbreak lasting several years.\textsuperscript{14} A subsequent study revealed the strain in question was more prevalent in the surrounding community than it was prior to the jail outbreak.\textsuperscript{35} In Maricopa County, Ariz, 24% of persons reported with TB during 1999 and 2000 had been incarcerated in the county jail prior to their TB diagnosis.\textsuperscript{37} Additionally, it was discovered that the majority of persons (83%) who later had TB had not received any TB screening while in jail. These and other reports have highlighted the need for implementing infection control measures in correctional facilities.\textsuperscript{34}

Our data confirmed that health disparities in treatment outcomes exist for inmates with
TB. Inmates have lower treatment completion rates; even when individual risk groups are compared, the discrepancy in treatment completion for inmates persists (Table 4). Tuberculosis screening at entry to a correctional facility provides a unique opportunity for identifying individuals at risk for TB who might not otherwise have access to medical care and prevention services. Correctional systems, especially jails, offer distinct logistical obstacles to screening and treatment; inmates are moved frequently or are released, making evaluation and completion of therapy difficult at best. Inmates are more likely to have treatment outcomes classified as “incomplete” owing to their moving out of the jurisdiction or being lost to treatment super-TB. Inmates have lower treatment completion for inmates persists (Table 4). When those individuals who did not receive a full vision. Failure to complete treatment for some prison inmates.

One limitation of our study is that the national surveillance data identified only case-patients diagnosed during incarceration. Those with TB who may have progressed to disease before or after incarceration are not separately defined in our analysis. Standard TB-control activities and investigations may not elicit information about incarceration, resulting in possible underreporting of cases that are epidemiologically linked with incarceration. Failures to establish these connections hamper the effectiveness of public health interventions. Another limitation of the study is the difficulty of tracking outcomes when inmates are transferred within or between correctional systems. For that reason, our data may underestimate completion rates for some prison inmates.

Poor access to TB services and socioeconomic status play a role in the elevated TB rates among correctional inmates. However, inmates are more likely to receive treatment by directly observed therapy, a patient-management practice that generally improves the success of treatment completion. Our finding of unacceptably low rates for the therapy completion among inmates is disturbing because of the possibility that these individuals may be the cause of future TB outbreaks in a given community. To better ascertain and improve treatment completion rates among inmates, health departments should enhance their capacity for tracking TB patients diagnosed or treated in correctional systems. To ensure that TB medical evaluations and therapy are completed for inmates, public health and corrections officials are obliged to develop policies that optimize discharge planning and case management for inmates released during TB evaluation or treatment. These policies should be reevaluated periodically to determine whether such practices should be modified to improve outcomes.

**About the Authors**
At the time of the study, Jessica R. MacNeil, Mark N. Lobato, and Marissa Moore were with the Division of Tuberculosis Elimination, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Ga.

Requests for reprints should be sent to National Center for HIV, STD, and TB Prevention, Office of Communications, Centers for Disease Control and Prevention, 1600 Clifton Road, Mail Stop E-06, Atlanta, GA 30333.

This article was accepted May 20, 2005.

**Contributors**
The authors all conceptualized the study. J. R. MacNeil conducted analyses. M. Moore supervised the analyses. M. N. Lobato assisted with the interpretation of the data analyses and coauthored the article. All authors conceptualized ideas, interpreted findings, and reviewed drafts of the article.

**Acknowledgment**
We thank Robert Pratt for his careful scrutiny during data verification.

**Human Participation Protection**
No protocol approval was needed for this study. The national surveillance system has been classified by the CDC as a project not involving human subjects or research because the primary intent is a public health practice disease control activity, specifically routine disease surveillance. The data are used for disease control program or policy purposes.

**References**
12. Bellin EF, Fletcher DD, Safer SM. Association of tuberculosis infection with increased time in or admission to the New York City jail system. JAMA. 1993;269:2226-2231.


